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Abstract. The complexity of networks of biological signalling pathways
is such that the development of simplifying models is essential in trying to
understand the wide-ranging cellular responses they can generate. In this
paper a continuous variant of membrane systems is introduced and used
to model the epidermal growth factor receptor signalling network which
is known to play a key role in tumour cell proliferation, angiogenesis and
metastasis.
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1 Introduction

Membrane Computing is an emergent branch of Natural Computing introduced
by G. Păun in [7]. Since then it has received an important attention from the
scientific community. In fact, Membrane Computing has been selected by the
Institute for Scientific Information, USA, as a fast Emerging Research Front in
Computer Science, and [6] was mentioned in [11] as a highly cited paper in
October 2003.

This new non-deterministic model of computation starts from the assumption
that the processes taking place in the compartmental structure of a living cell can
be interpreted as computations. The devices of this model are called P systems.
Roughly speaking, a P system consists of a cell-like membrane structure, in the
compartments of which one places multisets of objects which evolve according
to given rules in a synchronous non-deterministic maximally parallel manner.

Most variants of membrane systems have been proved to be computationally
complete, that is equivalent in power to Turing machines, and computationally
efficient, that is being able to solve computationally hard problems in polynomial
time. P systems as a discrete model of computation have also been used to model
biological phenomena (see the volume in [1]); and as a continuous model in [5].
A first formalization of non-discrete P system and a way to approximate them
was introduced in [2].
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In this paper we introduce a continuous variant of P systems different from
that in [5] and we use it to model the epidermal growth factor receptor (EGFR)
signalling network. Up to now the usual mathematical formalization of biochem-
ical signalling networks has been done using differential equations. This paper
introduces a novel formalization of this phenomena in a computational frame-
work.

The epidermal growth factor receptor (EGFR) belongs to the tyrosine ki-
nase family of receptors. Binding of the epidermal growth factor (EGF) to the
extracellular domain of EGFR induces receptor dimerization and autophospho-
rylation of intracellular domains. Then a multitude of signaling proteins are
recruited starting a complex signalling cascade that transfers the activation sig-
nal from the receptor to the nucleus. Dysregulated EGFR expression, ligand
production and signalling have been proved to have a strong association with
tumourgenesis. As a result of this, EGFR has been identified as a key biological
target for the development of novel anticancer therapies.

The paper is organised as follows. Continuous P systems are introduced in
the next section. In section 3 we discuss how continuous P systems can be ap-
proximated by discrete systems in order to implement them in computers; a
description of the EGF signalling network is given in section 4. In section 5 the
model of the EGF signalling network is presented. Some results are exposed
in the next section. Finally, conclusions and future work are given in the last
section.

2 Continuous P Systems

Usual variants of P systems are discrete models of computation where in every
step the rules are applied in a maximal way an integer number of times. Here
we introduce a variant whose systems can evolve in every instant applying a
maximal set of rules a positive real number of times determined by a function
K. This variant is inspired by the fact that in vitro chemical reactions evolve
in a continuous way following a rate that depends on the concentration of the
reactants.

Roughly speaking, a continuous P system consists in a membrane structure, a
hierarchically arranged set of membranes. More formally, a membrane structure
is a rooted tree, where the nodes are called membranes, the root is called skin,
and the leaves are called elementary membranes. Informally we can represent a
membrane structure using Venn diagrams.

In the membrane structure one places multisets of objects; usual P systems
deal with discrete multisets but here we work with continuous multisets. A
continuous multiset over an alphabet Σ is a mapping from Σ to R+ where
R+ = {x ∈ R : x ≥ 0}.

Next we give a formal definition of continuous P systems. A continuous P
system is a construct, Π = (Σ,µ,w1,0, . . . , wn,0,R,K), where:

1. n ≥ 1 is the degree of the system (number of membranes);
2. Σ = {c1, . . . , cm} is the alphabet of objects;
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3. µ is a membrane structure consisting of n membranes labelled with 1, . . . , n
(usually, we identify the membranes with labels from a finite set H).

4. w1,0, . . . , wn,0 are continuous multisets associated with each membrane of
the membrane structure µ

5. R is a finite set of rules of the form r ≡ (u, v, u′, v′, i) where u, v, u′, v′ ∈ Σ∗,
and 1 ≤ i ≤ n. We represent a rule r as follows:

u [ v ]i → u′[ v′ ]i

Notation: (r)1 = u; (r)2 = v; (r)3 = u′; (r)4 = v′ and (r)5 = i.
6. K is the rate of application function which associates with each rule and

multiplicity of the objects in µ the rate of application of the rule:

K : R×Mn×m(R+) → R+

where Mn×m(R+) is the set of matrixes of order n × m over R+.

For usual P systems we talk about computations but for continuous P systems
we prefer to think of evolutions. An evolution of a continuous P system is a
mapping from R+ to Mn×m(R+).

A configuration of a continuous P system Π at an instant t ∈ R+ is a matrix
of order n × m over R+. We interpret the configurations as assignments of
continuous multisets to the membranes of the system.

Thus, an evolution E of a continuous P system associates with each t ∈ R+

a configuration E(t) of the system at the instant t.

E(t) = (ai,j(t)) 1 ≤ i ≤ n

1 ≤ j ≤ m

For each i, 1 ≤ i ≤ n, we denote by wi(t) the continuous multisets over Σ =
{c1, . . . , cm} defined as follows: (wi(t))(cj) = aij(t) for 1 ≤ j ≤ m.

In order to describe how to determine the evolution of a P system we need
to define the relevant rules to a membrane.

Given a continuous P system, Π = (Σ,µ,w1,0, . . . , wn,0,R,K), and a mem-
brane i (1 ≤ i ≤ n) we denote:

Ri = {r : (r)5 = i},
R∗

i = {r : f((r)5) = i},

where f((r)5) is the father of the membrane (r)5 in the membrane structure µ.
We say that the rules in Ri ∪R∗

i are the relevant rules to the membrane i.
The way a continuous P system, Π = (Σ,µ,w1,0, . . . , wn,0,R,K), evolves

is determined by the initial multisets w1,0, . . . , wn,0 and the rate of application
function K. We define the initial configuration of Π as the assignment of the
continuous multisets w1,0, . . . , wn,0 to the membranes 1, . . . , n of the system.

The rules are applied during the evolution of the system according to K
following the next criterion. At an instant t ∈ R+, a rule r ∈ R is applied
K(r, E(t)) times; that is K(r, E(t)) units of the reactants are consumed and
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K(r, E(t)) units of the products are produced. In this sense we can say that the
rules are applied in a K-maximal way.

More precisely, given an object cj ∈ Σ, 1 ≤ j ≤ m, and a membrane i,
1 ≤ i ≤ n, the real number (wi(cj))(t), denoted by |cj |i(t), is determined by the
next formula:

|cj |i(t) = |cj |i(0) +
∑

r∈Ri∧cj∈alph((r)4)

∫ t

0

K(r,Π(s)) ds+ (1)

+
∑

r∈R∗
i
∧cj∈alph((r)3)

∫ t

0

K(r,Π(s)) ds− (2)

−
∑

r∈Ri∧cj∈alph((r)2)

∫ t

0

K(r,Π(s)) ds− (3)

−
∑

r∈R∗
i
∧cj∈alph((r)1)

∫ t

0

K(r,Π(s)) ds (4)

Observe that on the one hand the effect of the application of the rules in (1)
and (2) increases |cj |i(t) because cj appears in the right-hand side of the rules
(cj is a product) but on the other hand (3) and (4) decrease |cj |i(t) because cj

appears in the left-hand side of the rules (cj is a reactant).

3 Approximating Continuous P Systems

In computers real numbers are represented by a finite set of rational numbers.
Therefore like in most continuous models we need to develop approximations in
order to simulate evolutions of continuous P systems in computers.

As shown in the previous section in order to determine the configuration of
a system at given instant t we only need to compute an integral of the rate of
application function K. In consequence to approximate continuous P systems
in a finite set of instants t0, · · · , tq we can use any suitable known numerical
method to approximate integrals. Here for simplicity we use the rectangle rule;
that is, we suppose tl+1 − tl = p is small enough to assume that K remains
constant and equal to K(r, E(tl)) in the interval [tl, tl+1] for l = 0, . . . , q − 1.
With this assumption we design the next method which gives E(t0), . . . , E(tq).

|cj |i(0) = wi,0(cj)

|cj |i(tl+1) = |cj |i(tl) +
∑

r∈Ri∧cj∈alph((r)4)

p K(r,Π(tl))+

+
∑

r∈R∗
i
∧cj∈alph((r)3)

p K(r,Π(tl))−

−
∑

r∈Ri∧cj∈alph((r)2)

p K(r,Π(tl))−

−
∑

r∈R∗
i
∧cj∈alph((r)1)

p K(r,Π(tl))
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4 EGFR Signalling Network

In this section we describe the part of the EGFR signalling network depicted
below which only considers three coupled cycles of interactions between the
phosphotyrosine residues of the EGFR and three cytoplasmic proteins, namely
Grb2, Shc and PLCγ .

The epidermal growth factor receptor (EGFR) belongs to the family of
protein-tyrosine kinase receptors, which regulate cell growth, survival, prolif-
eration and differentiation. EGFR is activated when epidermal growth fac-
tor (EGF ) (or another EGF family factor like transforming growth factor–α,
TGF−α) binds to its extracellular domain forming the complex EGFR−EGF .
Binding of the ligand to the receptor induces receptor dimerisation (association
of two receptor monomers) yielding a complex we will denote as EGFR−EGF2.
Then autophosphorylation of tyrosine residues on the cytoplasmic tail takes place
producing the phosphorylated receptor, EGFR−EGF ∗

2 . Tyrosine phosphoryla-
tion triggers the binding of several cytoplasmic proteins to the receptor. As
mentioned before we only consider here three proteins as an initial core model.

One of these proteins is phospholipase C-γ (PLCγ). This first cycle starts
when PLCγ binds to the phosphorylated receptor forming the complex EGFR−
EGF ∗

2 −PLCγ which is phosphorylated yielding EGFR−EGF ∗

2 −PLC∗

γ . This
cycle is completed when the last complex dissociates into EGFR − EGF ∗

2 and
phosphorylated phospholipase C-γ (PLC∗

γ) which in turn can either be dephos-
phorylated or translocate to the cell membrane.

Another cycle starts with the binding of growth factor receptor-binding pro-
tein 2 (Grb2) to a receptor phosphotyrosine producing the complex EGFR −
EGF ∗

2 − Grb2. This complex is a branch point in the network but we will only
follow the link to the Ras signalling pathway. The binding of the Son of Sevenless
homolog protein (SOS) produces the ternary complex EGFR−EGF ∗

2 −Grb2−
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SOS which subsequently dissociates into the phosphorylated receptor and the
complex Grb2 − SOS, which further dissociates into Grb2 and SOS.

Src homology and collagen domain protein (Shc) plays a key role in the
last cycle. Shc binds to the receptor producing the complex EGFR − EGF ∗

2 −
Shc which is phosphorylated to yield EGFR − EGF ∗

2 − Shc∗ which can either
dissociate into EGFR−EGF ∗

2 and Shc∗ or form with Grb2 the ternary complex
EGFR − EGF ∗

2 − Shc∗ − Grb2. Then this complex may dissociate to yield the
phosphorylated receptor and the complex Shc∗ − Grb2. Alternately SOS can
also bind to the ternary complex to produce the four protein complex EGFR−
EGF ∗

2 − Shc∗ − Grb2 − SOS which can also be formed by the binding of the
complex Grb2−SOS to EGFR−EGF ∗

2 −Shc∗. Subsequently the four protein
complex dissociates into EGFR−EGF ∗

2 and Shc∗−Grb2−SOS which further
dissociates into Shc∗ and Grb2 − SOS. Finally Grb2 − SOS yields Grb2 and
SOS and Shc∗ is dephosphorylated by phosphatases to produce Shc.

Observe that there exists a cross-talk between the last two cycles meanwhile
the first one is quite independent from the others. Moreover all the chemicals
reactions described here are reversible.

5 Modelling EGFR Signalling Network by P Systems

In this section we use a continuous P system, Π = (Σ,µ,we,0, ws,0, wc,0,R,K),
to model the part of the EGFR signalling network described in the previous
section. The system Π is defined as follows:
• Alphabet: In the alphabet Σ we collect all the proteins and complexes of
proteins that take part in the signalling cascade.

Σ = {EGF, EGFR, PLCγ , PLC∗

γ , PLCγ−I, Shc, Shc∗, Grb2, SOS, EGFR−EGF}
∪ {EGFR−EGF2, EGFR−EGF ∗

2 , EGFR−EGF ∗

2−PLCγ , EGFR−EGF ∗

2−Shc}
∪{EGFR−EGF ∗

2−Shc∗, EGFR−EGF ∗

2−Shc∗−Grb2, EGFR−EGF ∗

2−Grb2}
∪ {EGFR−EGF ∗

2−Grb2−SOS, EGFR−EGF ∗

2−Shc∗−Grb2−SOS}

∪ {Grb2−SOS, Shc∗−Grb2−SOS, Shc∗−Grb2}

• Membrane Structure: In the part of the EGFR signalling network that we
are modelling there are three relevant regions, namely the environment, the cell
surface and the cytoplasm. We represent them in the membrane structure as the
membranes labelled with: e for the environment, s for the cell surface and c for
the cytoplasm.
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• Initial Multisets: In the initial multisets we represent the initial concentra-
tions of the chemical substances in the environment, the cell surface and the
cytoplasm. These concentration has been obtained from the references to simu-
late over-saturation of the environment with EGF (see [3]).

we,0(p) =

{

200 if p = EGF

0 otherwise

ws,0(p) =

{

100 if p = EGFR

0 otherwise

wc,0(p) =

{

10 if p = PLCγ , Grb2, SOS

0 otherwise

• Rules and Rate of application function: In the rules we model the chem-
ical reactions described in the previous section. To model the reactions we use
the Law of Mass Action which says that the rate of a reaction is proportional to
the product of the concentrations of the reactants. That is, if we have a reaction
of the form:

r1 + · · · + rn → p1 + · · · + pm,

then the rate of this reaction is k|r1| · · · |rn|, where k is called kinetic constant.
We also use the Michaelis law that states that in a reaction that takes place

in presence of a catalyst and where the concentration of the substrate is present
in large excess over the concentration of the catalyst the rate of application of
the reaction is:

k|S|

K + |S|
,

where |S| is the concentration of the substrate and k, K are called Michaelis
constants.

The kinetic and Michaelis constants are taken from the literature, see the
references [3],[10] and their bibliography.

RULES RATE

EGF [ EGFR ]s → [ EGFR−EGF ]s 0.003|EGF |e|EGFR|s

[ EGFR−EGF ]s → EGF [ EGFR ]s 0.06|EGFR−EGF |s

[ EGFR−EGF, EGFR−EGF ]s → [ EGFR−EGF2 ]s 0.01|EGFR−EGF |2s

[ EGFR−EGF2 ]s → [ EGFR−EGF, EGFR−EGF ]s 0.1|EGFR−EGF2|s

[ EGFR−EGF2 ]s → [ EGFR−EGF ∗

2 ]s |EGFR−EGF2|s

[ EGFR−EGF ∗

2 ]s → [ EGFR−EGF2 ]s 0.01|EGFR−EGF ∗

2 |s

EGFR−EGF ∗

2 [ PLCγ ]c → EGFR−EGF ∗

2−PLCγ [ ]c 0.06|EGFR−EGF ∗

2 |s|PLCγ |c
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RULES RATE

EGFR−EGF ∗

2−PLCγ [ ]c → EGFR−EGF ∗

2 [ PLCγ ]c 0.2|EGFR−EGF ∗

2−PLCγ |s

[ EGFR−EGF ∗

2−PLCγ ]s → [ EGFR−EGF ∗

2−PLC∗

γ ]s |EGFR−EGF ∗

2−PLCγ |s

[ EGFR−EGF ∗

2−PLC∗

γ ]s → [ EGFR−EGF ∗

2−PLCγ ]s 0.05|EGFR−EGF ∗

2−PLC∗

γ |s

EGFR−EGF ∗

2−PLC∗

γ [ ]c → EGFR−EGF ∗

2 [ PLC∗

γ ]c 0.3|EGFR−EGF ∗

2−PLC∗

γ |s

EGFR−EGF ∗

2 [ PLC∗

γ ]c → EGFR−EGF ∗

2−PLC∗

γ [ ]c 0.006|EGFR−EGF ∗

2 |s|PLC∗

γ |c

[ PLC∗

γ ]c → [ PLCγ ]c
|PLC∗

γ |c

100 + |PLC∗

γ |c

PLC∗

γ [ ]s → [ PLCγ−I ]s |PLC∗

γ |c

[ PLCγ−I ]s → PLC∗

γ [ ]s 0.03|PLC∗

γ−I|s

EGFR−EGF ∗

2 [ Grb2 ]c → EGFR−EGF ∗

2−Grb2 [ ]c 0.003|EGFR−EGF ∗

2 |s|Grb2|c

EGFR−EGF ∗

2−Grb2 [ ]c → EGFR−EGF ∗

2 [ Grb2 ]c 0.05|EGFR−EGF ∗

2−Grb2|s

EGFR−EGF ∗

2−Grb2 [ SOS ]c → EGFR−EGF ∗

2−Grb2−SOS [ ]c 0.01|EGFR−EGF ∗

2−Grb2|s|SOS|c

EGFR−EGF ∗

2−Grb2−SOS [ ]c → EGFR−EGF ∗

2−Grb2 [ SOS ]c 0.06|EGFR−EGF ∗

2−Grb2−SOS|s

EGFR−EGF ∗

2−Grb2−SOS [ ]c → EGFR−EGF ∗

2 [ Grb2−SOS ]c 0.03|EGFR−EGF ∗

2−Grb2−SOS|s

EGFR−EGF ∗

2 [ Grb2−SOS ]c → EGFR−EGF ∗

2−Grb2−SOS [ ]c 0.0045|EGFR−EGF ∗

2 |s|Grb2−SOS|s

[ Grb2−SOS ]c → [ Grb2, SOS ]c 0.0015|Grb2−SOS|c

[ Grb2, SOS ]c → [ Grb2−SOS ]c 0.0001|Grb2|c|SOS|c

EGFR−EGF ∗

2 [ Shc ]c → EGFR−EGF ∗

2−Shc[ ]c 0.09|EGFR−EGF ∗

2 |s|Shc|c

EGFR−EGF ∗

2−Shc[ ]c → EGFR−EGF ∗

2 [ Shc ]c 0.6|EGFR−EGF ∗

2−Shc|s

[ EGFR−EGF ∗

2−Shc ]s → [ EGFR−EGF ∗

2−Shc∗ ]s 6|EGFR−EGF ∗

2−Shc|s

[ EGFR−EGF ∗

2−Shc∗ ]s → [ EGFR−EGF ∗

2−Shc ]s 0.06|EGFR−EGF ∗

2−Shc|s
EGFR−EGF ∗

2−Shc∗[ ]c → EGFR−EGF ∗

2 [ Shc∗ ]c 0.3|EGFR−EGF ∗

2−Shc∗|s

EGFR−EGF ∗

2 [ Shc∗ ]c → EGFR−EGF ∗

2−Shc∗[ ]c 0.0009|EGFR−EGF ∗

2−Shc∗|s

[ Shc∗ ]c → [ Shc ]c
1.7|Shc∗|c

340 + |Shc∗|c

EGFR−EGF ∗

2−Shc∗[ Grb2 ]c → EGFR−EGF ∗

2−Shc∗−Grb2 [ ]c 0.003|EGFR−EGF ∗

2−Shc∗|s|Grb2|c

EGFR−EGF ∗

2−Shc∗−Grb2 [ ]c → EGFR−EGF ∗

2−Shc∗[ Grb2 ]c 0.1|EGFR−EGF ∗

2−Shc∗−Grb2|s

EGFR−EGF ∗

2−Shc∗−Grb2 [ ]c → EGFR−EGF ∗

2 [ Shc∗−Grb2 ]c 0.3|EGFR−EGF ∗

2−Shc∗−Grb2|s

EGFR−EGF ∗

2 [ Shc∗−Grb2 ]c → EGFR−EGF ∗

2−Shc∗−Grb2 [ ]c 0.0009|EGFR−EGF ∗

2 |s|Shc∗−Grb2|c

EGFR−EGF ∗

2−Shc∗−Grb2 [ SOS ]c → EGFR−EGF ∗

2−Shc∗−Grb2−SOS[ ]c 0.01|EGFR−EGF ∗

2−Shc∗−Grb2|s|SOS|c

EGFR−EGF ∗

2−Shc∗−Grb2−SOS[ ]c → EGFR−EGF ∗

2−Shc∗−Grb2 [ SOS ]c 0.0214|EGFR−EGF ∗

2−Shc∗−Grb2−SOS|s
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RULES RATE

EGFR−EGF ∗

2−Shc∗−Grb2−SOS[ ]c → EGFR−EGF ∗

2 [ Shc∗−Grb2−SOS ]c 0.12|EGFR−EGF ∗

2−Shc∗−Grb2−SOS|s

EGFR−EGF ∗

2 [ Shc∗−Grb2−SOS ]c → EGFR−EGF ∗

2−Shc∗−Grb2−SOS[ ]c 0.00024|EGFR−EGF ∗

2 |s|Shc∗−Grb2−SOS|c

[ Shc∗, Grb2 ]c → [ Shc∗−Grb2 ]c 0.003|Shc∗|c|Grb2|c

[ Shc∗−Grb2 ]c → [ Shc∗, Grb2 ]c 0.1|Shc∗−Grb2|c

[ Shc∗−Grb2, SOS ]c → [ Shc∗−Grb2−SOS ]c 0.03|Shc∗−Grb2|c|SOS|c

[ Shc∗−Grb2−SOS ]c → [ Shc∗−Grb2, SOS ]c 0.064|Shc∗−Grb2−SOS|c

[ Shc∗−Grb2, SOS ]c → [ Shc∗−Grb2−SOS ]c 0.021|Shc∗−Grb2|c|SOS|c

[ Shc∗−Grb2−SOS ]c → [ Shc∗−Grb2, SOS ]c 0.1|Shc∗−Grb2−SOS|c

EGFR−EGF ∗

2−Shc∗[ Grb2−SOS ]c → EGFR−EGF ∗

2−Shc∗−Grb2−SOS [ ]c 0.009|EGFR−EGF ∗

2−Shc∗|s|Grb2−SOS|c

EGFR−EGF ∗

2−Shc∗−Grb2−SOS [ ]c → EGFR−EGF ∗

2−Shc∗[ Grb2−SOS ]c 0.0429|EGFR−EGF ∗

2−Shc∗−Grb2−SOS|s

6 Results

In this section we present the evolution of concentration of a number of key com-
plexes in the simulation of the continuous P system introduced in the previous
section. In order to approximate the evolution of the P system we have used the
method introduced in section 3.
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The two figures shown in the previous page depict the evolution of the con-
centration of the phosphorylated receptor EGFR − EGF ∗

2 and the complex
EGFR − EGF ∗

2 − PLC∗ during 70 seconds. Both graphics show an early re-
sponse to EGF reaching pronounced maximum within the first 5 seconds and
then the concentrations descend to low levels. These results agree quite well with
biological data (see [3] and [10]).

The previous graphics depict the evolution during 70 seconds of the concen-
tration of the complexes EGFR−EGF ∗

2 −Shc∗, EGFR−EGF ∗

2 −Shc∗−Grb2,
EGFR−EGF ∗

2 −Shc∗−Grb2−SOS and EGFR−EGF ∗

2 −Grb2−SOS. They
also present the same pattern discussed for the first two figures. Nevertheless
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the next two graphics, which depict the evolution in time of the concentration
of Shc∗ − Grb2 and Shc∗ − Grb2 − SOS, present more sustained responses to
EGF stimulation which is also in accordance with biological data (see [3] and
[10]).

7 Conclusions and Future Work

In this paper we have introduced continuous P systems, a variant of membrane
systems, and we have used them to develop a biochemically plausible model of
part of the EGFR signalling network. The results obtained are in accordance with
biological data showing that continuous P systems and membrane computing,
in general, are a reliable framework for simulating biological phenomena.

Nevertheless here we have only modelled a part of the EGFR signalling net-
work; currently we are expanding the model to consider receptor internalization
and degradation, activation of Ras − GTP , the MAP kinase cascade and the
expression of the target gene, c − fos.

About the way of approximating continuous P systems it is interesting to
bound the error in the approximation that we make when using different nu-
merical methods to compute integrals. So we can design better approximations
than the one used in this paper.

As mentioned in the introduction EGFR is a target for the development
of novel anticancer therapies. In future work we intend to use this model to
investigate the effect of various therapies, like kinase inhibition and radiation
therapy, on the signalling network.

Finally in order to make this model more attractive to biologist and bio-
molecular researchers we are developing software with a friendly interface using
CLIPS and JAVA.
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